Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684700

RESUMO

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Camundongos , Quimiorradioterapia/métodos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Tolerância a Radiação , Proteínas de Sinalização YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteômica
2.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205341

RESUMO

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients' prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.

3.
Sci Rep ; 9(1): 2990, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816227

RESUMO

Uveal melanoma (UM) is an aggressive tumor in which approximately 50% of patients develop metastasis. Expression of the PTP4A3 gene, encoding a phosphatase, is predictive of poor patient survival. PTP4A3 expression in UM cells increases their migration in vitro and invasiveness in vivo. Here, we show that CRMP2 is mostly dephosphorylated on T514 in PTP4A3 expressing cells. We also demonstrate that inhibition of CRMP2 expression in UM cells expressing PTP4A3 increases their migration in vitro and invasiveness in vivo. This phenotype is accompanied by modifications of the actin microfilament network, with shortened filaments, whereas cells with a inactive mutant of the phosphatase do not show the same behavior. In addition, we showed that the cell cytoplasm becomes stiffer when CRMP2 is downregulated or PTP4A3 is expressed. Our results suggest that PTP4A3 acts upstream of CRMP2 in UM cells to enhance their migration and invasiveness and that a low level of CRMP2 in tumors is predictive of poor patient survival.


Assuntos
Biomarcadores Tumorais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Neoplasias Uveais/metabolismo , Citoesqueleto de Actina/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação com Perda de Função , Melanoma/genética , Melanoma/patologia , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Tirosina Fosfatases/genética , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
4.
Exp Cell Res ; 353(2): 88-99, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28284838

RESUMO

In a previous transcriptomic analysis of 63 ocular melanomas of the uvea, we found that expression of the PRL-3/PTP4A3 gene, encoding a phosphatase that is anchored to the plasma membrane, was associated with the risk of metastasis, and a poor prognosis. We also showed that PRL-3 overexpression in OCM-1 ocular melanoma cells significantly increased cell migration in vitro and invasiveness in vivo, suggesting a direct role for PRL-3 in the metastatic spreading of uveal melanoma. Here, we aimed to identify PRL-3 substrates at the plasma membrane involved in adhesion to the extracellular matrix. We focused on integrin ß1, which is the most highly expressed integrin in our cohort of uveal melanomas. We show that preventing PRL-3 anchorage to the plasma membrane i) abolishes PRL-3-induced migration in OCM-1 cells, ii) specifically enhances the spreading of OCM-1 cells overexpressing PRL-3, and iii) favors the maturation of large focal adhesions (FAs) containing integrin ß1 on collagen I. Knockdown experiments confirmed integrin ß1 involvement in PRL3-induced migration. We identified interactions between PRL-3 and integrin ß1, as well as with FAK P-Y397, an auto-activated form of Focal Adhesion Kinase found in FAs. We also show that integrin ß1 may be dephosphorylated by PRL-3 in its intracytoplasmic S/T region, an important motif for integrin-mediated cell adhesion. Finally, we observed that PRL-3 regulated the clustering of integrin ß1 in FAs on collagen I but not on fibronectin. This work identifies PRL-3 as a new regulator of cell adhesion structures to the extracellular matrix, and further supports PRL-3 as a key actor of metastasis in uveal melanoma, of which molecular mechanisms are still poorly understood.


Assuntos
Movimento Celular/genética , Integrina beta1/biossíntese , Melanoma/genética , Proteínas de Neoplasias/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Neoplasias Uveais/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patologia , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Integrina beta1/genética , Melanoma/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Neoplasias Uveais/patologia
5.
Invest Ophthalmol Vis Sci ; 57(4): 1982-90, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27096756

RESUMO

PURPOSE: To study PTP4A3 phosphatase and MMP14 metalloprotease synergy in uveal melanoma aggressiveness. METHODS: Cell membrane localization of matrix metalloprotease 14 (MMP14) in uveal melanoma cells expressing protein tyrosine phosphatase A3 (PTP4A3) was assessed by flow cytometry or immunohistochemistry. The vesicular trafficking of MMP14 in the presence of PTP4A3 was evaluated in OCM-1 cells expressing either the wild-type or mutated phosphatase. Finally, MMP14 localization at the cell membrane of OCM-1 cells was impaired using RNA interference, and the PTP4A3-related migration in vitro and invasiveness in vivo of the treated cells were evaluated. RESULTS: We found that the membrane-anchored MMP14 is enriched at the cell surface of OCM-1 cells, patient-derived xenograft cells, and human primary uveal melanoma tumors expressing PTP4A3. Moreover, we show that PTP4A3 and MMP14 colocalize and that the vesicular trafficking of MMP14 is faster in the presence of active PTP4A3. Finally, we demonstrate that inhibition of MMP14 expression in uveal melanoma cells expressing PTP4A3 impairs their migration in vitro and invasiveness in vivo. CONCLUSIONS: Our observations indicate that PTP4A3 increases cell membrane accumulation of MMP14 as a result of increased cellular trafficking of the metalloprotease. We also show that downregulation of MMP14 expression reduced PTP4A3-induced cell migration and invasiveness. Taken together, our findings suggest that PTP4A3-related subcellular localization of MMP14 is an important event in metastasis induction.


Assuntos
Membrana Celular/metabolismo , Metaloproteinase 14 da Matriz/fisiologia , Melanoma/fisiopatologia , Proteínas de Neoplasias/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Neoplasias Uveais/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Citometria de Fluxo , Imunofluorescência , Humanos , Melanoma/metabolismo , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/fisiopatologia , Interferência de RNA , Úvea/metabolismo , Úvea/fisiopatologia , Neoplasias Uveais/metabolismo
6.
PLoS One ; 8(12): e84717, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376839

RESUMO

Uveal melanoma is the most common intraocular malignancy in adults, representing between about 4% and 5% of all melanomas. High expression levels of Protein Tyrosine Phosphatase 4A3, a dual phosphatase, is highly predictive of metastasis development and PTP4A3 overexpression in uveal melanoma cells increases their in vitro migration and in vivo invasiveness. Melanocytes, including uveal melanocytes, are derived from the neural crest during embryonic development. We therefore suggested that PTP4A3 function in uveal melanoma metastasis may be related to an embryonic role during neural crest cell migration. We show that PTP4A3 plays a role in cephalic neural crest development in Xenopus laevis. PTP4A3 loss of function resulted in a reduction of neural crest territory, whilst gain of function experiments increased neural crest territory. Isochronic graft experiments demonstrated that PTP4A3-depleted neural crest explants are unable to migrate in host embryos. Pharmacological inhibition of PTP4A3 on dissected neural crest cells significantly reduced their migration velocity in vitro. Our results demonstrate that PTP4A3 is required for cephalic neural crest migration in vivo during embryonic development.


Assuntos
Movimento Celular/fisiologia , Metástase Neoplásica/fisiopatologia , Crista Neural/embriologia , Proteínas Tirosina Fosfatases/metabolismo , Crânio/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Primers do DNA/genética , Humanos , Hibridização In Situ , Melanoma/fisiopatologia , Reação em Cadeia da Polimerase , Proteínas Tirosina Fosfatases/genética , Crânio/citologia , Imagem com Lapso de Tempo , Neoplasias Uveais/fisiopatologia
7.
Cancer Res ; 71(3): 666-74, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21135111

RESUMO

A high percentage of uveal melanoma patients develop metastatic tumors predominantly in the liver. We studied the molecular profiles derived from gene expression microarrays and comparative genomic hybridization microarrays, to identify genes associated with metastasis in this aggressive cancer. We compared 28 uveal melanomas from patients who developed liver metastases within three years of enucleation with 35 tumors from patients without metastases or who developed metastases more than 3 years after enucleation. Protein tyrosine phosphatase type IV A member 3 (PTP4A3/PRL3), was identified as a strong predictor of metastasis occurrence. We demonstrated that the differential expression of this gene, which maps to 8q24.3, was not merely a consequence of 8q chromosome overrepresentation. PTP4A3 overexpression in uveal melanoma cell lines significantly increased cell migration and invasiveness in vivo, suggesting a direct role for this protein in metastasis. Our findings suggest that PTP4A3 or its cellular substrates could constitute attractive therapeutic targets to treat metastatic uveal melanomas.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias Hepáticas/secundário , Proteínas de Neoplasias/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Animais , Biomarcadores Tumorais/genética , Embrião de Galinha , Cromossomos Humanos Par 8 , Enucleação Ocular , Feminino , Expressão Gênica , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Masculino , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Melanoma/cirurgia , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Taxa de Sobrevida , Neoplasias Uveais/enzimologia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/cirurgia
8.
J Biol Chem ; 279(40): 41911-7, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15277526

RESUMO

Mitf encodes a basic helix-loop-helix transcription factor that plays an essential role in the differentiation of the retinal pigmented epithelium (RPE) and neural crest-derived melanocytes. As cells containing melanogenic enzymes (TRP2) are found in Mitf mouse mutants, it is not clear whether Mitf is a downstream factor or a master regulator of melanocyte differentiation. To further study the role of Mitf in committing cells to the melanocyte lineage, we express Mitf in the cultured quail neuroretina cells. This leads to the induction of two types of pigmented cells: neural crest-derived melanocytes, according to their dendritic morphology, physiology, and gene expression pattern are observed together with pigmented epithelial RPE-like cells. The expression of Mitf is lower in pigmented epithelial RPE-like cells than in neural crest-derived melanocytes. Accordingly, overexpression of Mitf in cultured quail RPE causes cells to develop into neural crest-like pigmented cells. Thus, Mitf is sufficient for the proper differentiation of crest-like pigmented cells from retinal cells and its expression level may determine the type of pigment cell induced.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Melanócitos/citologia , Crista Neural/citologia , Epitélio Pigmentado Ocular/citologia , Retina/citologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos , Embrião não Mamífero , Camundongos , Fator de Transcrição Associado à Microftalmia , Fenótipo , Codorniz , Fatores de Transcrição/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...